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PRECISE SOLUTION OF LAPLACE'S EQUATION 

ZHIXIN SHI AND BRIAN HASSARD 

ABSTRACT. An approximate method is described for solving Laplace's equation 

-JAu=O inQ1=(0? 1) X(0 1) 

uIlQ = g onO(2 

precisely in the sense of Aberth's 1988 monograph. The algorithm uses singu- 
larity extraction, Fourier series methods, Taylor series methods, and interval 
analysis to construct an approximation U(x, y) to the solution u(x, y) at 
points in the square, and a uniform bound on the error I U(x, y) - u(x, y)I . 
The algorithm applies to problems in which the boundary data g is specified in 
terms of four elementary functions. The boundary data may be discontinuous 
at the corners. 

1. INTRODUCTION 

Consider Laplace's equation 

1 Au=O inQ, 
(1.1) lul0=g onO0Q, 
where Q is the unit square (0, 1) x (0, 1) and an is the boundary of Q2. 
We suppose that g is defined on the sides 9Qj, j = 1, 2, 3, 4, of the square 
by continuous elementary functions gl(x), g2(y), g3(x), and g4(y). Here, 
aQj, j = 1, 2, 3, 4, are labeled counterclockwise starting with an, = {< < 
x < , y= 0}. 

For given positive integers n, N, the algorithm we describe determines an 
approximate solution U = ,N and an e = n,N such that Iu(x, y) - 

U(x, y)I < e uniformly for (x, y) E Q. Also, En,N = rnound + Etru, where 
6 round may be made arbitrarily small by increasing the precision of the interval 
arithmetic, and for each fixed n, 6trunc = O(N-2n-1), N -x,. 

There is an enormous body of literature on numerical methods for linear el- 
liptic partial differential equations, and a variety of packages available, such as 
[5]. There are methods capable of high-accuracy solution [3], methods for which 
H1 error bounds [8] and methods for which pointwise error bounds [2] have 
been derived. The present work combines a high-accuracy scheme with a point- 
wise bounding argument and methods of interval analysis to completely control 
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both truncation and roundoff error. The precision of the results is guaranteed. 
We believe that our scheme is the only one presently implemented which can 
make this claim. Our application of interval analysis uses precise methods de- 
scribed by Aberth [1] for linear algebra, differentiation, and quadrature. Our 
scheme is potentially useful for testing the accuracy of other schemes for solving 
general linear elliptic partial differential equations. 

The main idea in our scheme for (1.1) can be considered as a method for 
accelerating the convergence of Fourier series solutions. The convergence rate 
of such a series is limited by nonzero values of even-order derivatives of the 
boundary data gj, j = 1, 2, 3, 4, at the corners. As the functions gj, j = 
1, ... , 4, are elementary, their derivatives up to any fixed order at the corners 
are computable (i.e., can be computed precisely, cf. Aberth [1, Chapter 3]). We 
first use the known derivatives of the boundary data at the corners to convert 
(1.1) to a problem of the same form, but for which the even derivatives of the 
boundary data at the corners vanish up to a certain order. 

The resulting Laplace's equation is solved using a truncated Fourier series 
method. The truncation error is bounded using uniform bounds for 2kth- 
order derivatives of the boundary data, which are again computable. Taylor 
series methods are combined with interval analysis to obtain these bounds; the 
approach is similar to that used by Aberth [1, Chapter 3] in precise methods 
for quadrature. 

We call part of the scheme for (1.1) "singularity extraction", since singulari- 
ties of partial derivatives of the solution at the corners are removed. 

It is well known that the solution u of (1.1) is the sum of the solutions 
uj, j = 1,..., 4, of the problems 

(Auj=O inn, 
(1.2) Ujloij = gj k 

(Uj 10ak 0, kS 

with nonzero data only on aOj, j = 1, ..., 4. The solution of (1.2) with j = 1 
can be easily written as 

(1.3) u(x,y)=Zan sinh( Y)sinnrx, 
n=1 

where an = 2f0' g1 (x) sin n7rxdx, and there are similar expressions for the so- 
lutions uj, j = 2, 3, 4. 

An approximate solution of (1.1) can be found by truncating the Fourier 
series (1.3) and the other three Fourier series. However, these Fourier series do 
not in general converge fast enough to be the basis of a high-accuracy scheme 
unless the boundary data has additional properties. This motivates the following 
definitions: 

Definition 1.1 (Property Ak). For any integer k > 0, we say the boundary data 
g has property Ak if 
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rn +g~(2j) (x) - (_1)j lrn g(2J)(y) 

1limr g(2i)(x) - (-1)J lim g42J)(y), 
(1.4) x-I I1-+O 

( ) lim g(2j)(y) = (l)j 'L- g(2j)(x), 

lim g(2j)(y) = (_1)1 r g32j)(x) 

for all j = 0, ..., k, and all the limits exist. We say a problem (1.1) has property 
Ak if the associated boundary data has property Ak. 

Definition 1.2 (Property bk). For k > 0, we say that the boundary data g has 
property bk if 

lim g(2k)(x) = lim gk)(y) = 0, 

lim g(2k)(x) = lim g2k)(Y) = 0 

lim g(2k)(y) = lim g(2k)(x) = 0, 

limn g 2k)(y) = lim g(2k)(x) - 0. 

We say the problem (1.1) has property bk if the associated boundary data has 
property bk 

Definition 1.3 (Property Bk). We say that the boundary data g has property 
Bk if it has property bj for j = 0, 1, ..., k, and we say the problem (1.1) has 
property Bk if the associated boundary data has property Bk . 

The basic idea of the scheme we describe, is to convert a general problem ( 1. 1) 
which may not even have continuous boundary data (property Ao) to a problem 
of the same form (1.1) but with property Bn for some given n . This is done 
by subtracting linear combinations of specific harmonic functions in two stages. 
The first stage takes the general problem (1.1) to one with property An , and may 
be called singularity elimination because the harmonic functions employed have 
corner singularities. The second stage takes a problem with property An to one 
with property Bn by subtracting a polynomial. The resulting problem is then 
solved by classical Fourier series methods: if a problem (1.1) has property Bn 
for some sufficiently large n, then the Fourier series solution converges rapidly 
(see ?4). 

2. CONVERSION TO A BVP WITH PROPERTY An 

In this section we shall convert the boundary value problem (1.1) to a problem 
of the same general form but with "better" boundary data, i.e., having property 
An for some large n . It is not by itself sufficient for fast convergence of Fourier 
series solutions that a problem has property An for some large n. However, 
property. An is necessary, and converting (1.1) is the first step. We have the 
following 
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Lemma 2.1. (1) For any integer k > 0, the function 

(2.1) Vk(x, y) - r2k (cos(2k0)O + sin(2k0)lnr), 

where x = r cos 0 and y = r sin 0, is harmonic. Also the restriction Vklon has 
property Ak at (1, 0), (1, 1) and (0, 1), but not at (0, 0). Explicitly, for 
1?0, 

lim dX2j Vk(X, O) =, 

(2.2) 

lim d2j Vk(0 y) = (Y) k2(2k)!5jk 

(2) A general problem (1.1) can be converted to a problem of the same form 
( 1.1) which has property Ao by subtracting a linear combination of the functions 
VIl (x,~ y)-VO(X , y), Vo2(X , y) _VO(y, l I x,V3(X, y)-V0(l - x, I - y), 

and V04(x, y) =- VO(1 - y, x). 
(3) A problem (1.1) which has property Akl for some k > 1 can be converted 

to a problem of the same form (1.1) which has property Ak by subtracting a linear 
combination of the functions Vk1(x,y) Vk(x,y), Vk2(x,y) VV(y, 1 -x), 
Vk3(x, Y)=- Vk(l- x, I -y),. and Vk4(x, y)-=-Vk (I -y, x) 

Proof: Assertion (1) is easily verified. 
To prove (2), we set uo = u - >ij I oiVoi, where 

aol = - rliM 4(y) - rli g (x)) ir y-..+O+X-O 

a02 = i g i(x) - Mli + g2(y)), 

(2.3) 

aO3 = 
2 

gli y9 - lim 93?(X) 

2/ 
a!o4= (xliM 9g3(x)- liM g4(y). 

i7r \x-0+ y-1 

Then uo satisfies 

AAuO=0 inn, 
4 

Uolon = g - aoi Voi on OQ, 

and the new boundary data has property Ao. 
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To prove (3), we now suppose that problem (1.1) has property Ak-l with 
k > 1. Set Uk = U - E4=k akjVkj, where 

2 (( 1)kikim g42k)(y)_ lio gl2k(X)), 

_ 2 (I)k1 (2k)( (2k 

ak2 - lim g1 x(x- im g2 )(1 ) 
7r(2k)! \x -1-+ X++ 

(2.4) 

ak3 - ((_l)klim g22k)(y) - lim g3 )(X)) 

ak4 =- 
2 (_ li)k 

( 
g(2k)(x)- g(2k) 

7r(2k)! xurn g Y 2k) 

Then Uk satisfies 

AUk=O inQ, 
4 

UkIQ = g- aki Vk onO3, 

and the boundary data Ukj!o has property Ak. 
By induction, for any k > 0, we can therefore convert the general problem 

(1.1) to one of the same form having property Ak. ? 

3. CONVERSION TO A BVP WITH PROPERTY Bn 

In the last section, we gave a method of converting a general boundary value 
problem to one which has property A,. Here we convert the problem further to 
one for which the even-order derivatives of the boundary data vanish at all four 
corners, up to a certain order, i.e., yielding property Bn for some n. A BVP 
with property Bn for some large n does have fast-converging Fourier series 
solutions. We need two lemmas: 

Lemma 3.1. For any k > 0, the polynomial 

k (z Wk(X, iY) = k ...) x (1+y2+ k > 0, 
i= (2(k- i)+ )!(2i+ 1)! 

has the following properties: 
(1) Wk(x, y) is harmonic. Also the restriction Wkl n has property bk at 

(0, 0), (1, 0), (0, 1), but not at (1, 1). 
(2) x Wk/Ox2k - xy and 92kWl/ay2k 

I 
(-1)kxy 

(3) 92Wk(X, y)/0x2 - _-2Wk(x, y)/0y2 = Wk_(X, y) for k > 1. 

Proof. These properties can be verified directly. o 

Lemma 3.2. A problem (1.1) which has property Ak for some k > 0 can be 
converted to a problem of the same form which has property Bk by subtracting 
from the solution of (1.1) a linear combination of the functions Wjl (x, y) = 
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Wj(x, y), Wj2(x,y) = Wj(y, 1 - x), Wj3(x, y)=Wj(l -x,-y),and 

Wj(x, y)= Wj(l-y,x),j =0, 1..., k. 

Proof: Set vo = u- Z=1 I3kiW,, where 

flkl = lim g(2k)(y) = (-l)k lim g(2k)(x) 

flk2 = urn gl2k)(x) = ( )k urn g32k)(y) 
y +1~~~~~ 

(3.1) flk3 = urn g(2k)(y) = (-I)k liM g(2k)(x) 

I3k4 = ~'L?m g(2k)(x) = (-i)k urn g2k)(y) 

Then vo satisfies 

AuO = O in Qn, 

(3.2)f 
uolaQ = gf-ki'JWk on Oil 

i~=1 a 

which has property bk. Since Wk (x, y) is a polynomial, all derivatives are well 
defined and continuous at the corners of Q, and since Wki(x, y) is harmonic, 
the restriction of Wkl(x, y) to 9Q has property Aj for arbitrary i . Therefore, 
problem (3.2) also has property Ak. 

We apply this same procedure to convert (3.2) to a problem with prop- 
erty bk-l for v1 = vo - i=1, f8k-1,iWkl_, which also has property bk, since 
the derivatives of Wki-l of order 2k vanish identically. Continuing in this 
way, we find a problem for Vk = Vk 1 - Z=I1 1o, iWoi which has properties 
bo, b1, * -*, bk,, and so has property Bk as desired. o 

The following theorem describes a systematic way to convert a general system 
(1.1 ) to one with property Bn. 

Theorem 3.1. For any fixed n > 0, a general Laplace's equation (1.1) can be 
converted to one in the same form which has property Bn; the conversion can be 
performed in the following steps: 

(1) Set U(x, y) = u - n=0 i4 i + dki Wi), where cki and dki are 
8(n + 1) undetermined coefficients. 

(2) Set up 8(n + 1) linear equations, i.e., for j = 0, .-. , n let 

liM (UI@1)922)(X) iM (UIo44)(2j (y) = 0, 

lim (U10n1)(2j)(x) - M li (UIan2)(2j)(y) = 0 

lim (U0an3)(2j)(x) = lim (UIo22)(2j)(y) = 0, 

lim ( UtQ3 )(2)(X) = lim ( Ujn4)(2J)(y) = 0. 
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(3) Solve the linear system for the 8(n + 1) coefficients cki, dki (there is a 
unique solution). 

Then the new BVP: 

AU = 0, 

|Ulani = gj- [ E(CkiVkji+dkiWklj)] j=1 2 ~3, 4, 
Lk=0 i=1 

has property Bn . Here, Vki= Vki(x, y) and Wki =WI(x, y), i = 1, 2, 3, 4, 
are defined in Lemmas 2.1 and 3.2, and Vkij denotes the restriction of Vki(x, y) 
to the jth boundary (j = 1, 2, 3, 4). 

Proof Consider applying Lemmas 2.1 and 3.2 to a general problem (1.1). 
Boundary data g can be constructed with arbitrary values for each of the 
8(n + 1) limits limx ^o+ gf2 I(x), lim. 4- g(2j)(x), limy_+ gi2J)(y), 
limy_l I (2j) (y) lim_+ g(2j) (X) limx_-' g (2j) (X) limy_-O+ g(2j) (y) 

limy 1- g2J)(y), for j = 0, ..., n. The application of Lemmas 2.1 and 3.2 
constructs a new BVP with property Bn such that the difference between the 
solution of the original problem (1.1) and the new problem is a linear combi- 
nation 

n 4 

E E(Ckijki(X, Y) + dki Wki(x, y)). 
k=0 i=1 

The combination coefficients cki, dki, k = O, ..., n, i = 1,..., 4, provide a 
solution of the 8(n + 1) linear equations described in step 2 above. Since there 
exists such a solution vector in R8(n+l) for arbitrary forcing vector in R8(n+1) 

the coefficient matrix of the linear system is necessarily nonsingular and the 
solution for any particular boundary data is unique. o 

4. COEFFICIENTS OF FOURIER SERIES SOLUTIONS AND TRUNCATION ERROR 

We rewrite (3.3) as the BVP, 

JAU=0, 
(4.1) {VU 1 = G j = 1, 2, 3, 4, 

which has property Bn 
In this section we solve (4.1) by solving four problems, each a Laplace equa- 

tion with boundary function nonzero only on one side of the rectangle. Classical 
Fourier series methods are used to solve each of the four problems. 

4.1. The four boundary value problems. Consider 

[AU = 0, 
(4.2) < UI@Qj = Gj 

I UIonk = 0, k$ j, 
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for j = 1, 2, 3, 4. The Fourier series solutions are 

U1(X,Y y) = E aim sinh m(r sin m7rx, 
m=1 

U? sinh mirx 
U2(X Z y) = a2m sinhmrsn my 

m=1 

U3(x,y)=Za3m sinh m sir n m, 
m=1 

U4(X, y) =Za4m sinh mi(-x sin mizy, 
m=l 

where 

ajm = 2J Gj sin mirsds 

= 2 [1 gj sin m7rsds 

n4 

E E jCki Vkj sin m7rsds + dki J Wkj sin m7rs ds)] 

for j = 1, 2, 3, 4. The computation of fL Vkj sin mirsds and ft' Wkj sin mirsds 
for i, j = 1, 2, 3, 4, is described in Appendix A and B. 

4.2. Error from truncating the Fourier series solutions. Approximate solutions 
of (4.2), j= 1, ..., 4, are given by 

UiN(x, y)= aim sinhmr sin mrx, 
m=l N sinh mirx i ~y 

U2"(x,y)= Ea2m sinh m 7r 
sin mrry, 

m=1 

U3N"(x, y) = E a3m sinhmry sin mirx, 
- ~~~m=l 

N sinh m7r(1 -x) 
U4(x, y)=Za4m sinhmi1 sin mmry. 

m=l 

Since (4.1) has property Bn, it follows from integration by parts that 

ajm = 2J G sin m7rsds 

2(-)'t 2n+2G (s) sin mirsds 
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for each j = 1, 2, 3, 4. Let MP, be such that maxo<,<1 IGS2 M2)(s)I < jn'. 
Since the original boundary data is elementary, the bound Mjn can be computed 
using interval arithmetic and Taylor series methods. Then 

lajml < 
(?7r)2nt2 

and 

IU.(\~Y)-UN(IA< 2A jn J 0dx 
- <2n+2 N 2n+2 

2Mj.n 
(2n + 1)7r2n+2N2n+l 

Therefore UN(x, Y) = Z4 UJN(x, y) is an approximate solution of (4.1) such 
that 

| U X, )-N (X y ) I < trunc IU(x, Y) - u(x n)I? N 
where 

trunc 2(M1n + M2n + M3n + M4n) 
~n,N (2n + 1)7T2+2N2+ 

5. AN EXAMPLE OF THE ELIMINATION METHOD 

Consider 
Au=O inQ2=(O, 1)x(O, 1); 

U(X, O) = gl(x) = x2, O < x< 1, 

(5.1) u(1,y)=g2(y)= O, < y <, 

u(X,1)=g3(X)= 0, 0<x<1, 

U(O,y)=g4(y)= O, O<Y<1. 

From the boundary data g it follows that (5.1) does not have property Ao. 
We set uj = u - I aoi Vol , where aol = O, aO2 = -, ao3 = 0, and ao4 =0 

are determined by (2.3). Then uo satisfies 

Auo = O in 2= (O, 1) x (O, 1); 

Uo(X, 0) = go,(x) =x 2 1, O< X < 1, 

(5.2) Uo(l, y) = go2(Y) =, O < y < 1, 
U uo(X, 1) = g03(X) =-, arctan(l - x), O < x < 1, 

uo(0, y) = g04(y) = _2arctan() 0 < y < , 

so (5.2) has property Ao .The new boundary data is continuous, and the second 
derivatives of the boundary data uojqQ are given by 

{go",(x) = 2, 

g92(y) = O, 

gtt (X) = 4(1-x) 

g04(y) = 7r1+y2)2 
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It follows that problem (5.2) does not have property Al (condition (1.4) is 
violated). We set u1 = aii- S4 a1 ,where a, =- ?2 a12 = -,aI3= 0, 
and a14 = 0 are determined by (2.4) for k = 1. Then u1 satisfies 

(5.3) 
Au1=0 inQ; 

u1(x,0)g11(x)=2 1-(1X)2, 2 (X, 0) = gl 1 (X)-X - 1-X 

u(l , Y) = g12(y) = [(1 - y2) arctan(y) + y ln(l + y2)], 

U(X 1) = g13(x)= 2arctan(l -x)+ 2[(x2- l)arctan(Q)+xln(x2+ 1)] 

+ 2 - (1 - x)2) arctan(l - x) 

+ (I - x) ln(l +(1 -x)2)], 

U I(, y) =g14(y)= 2 arctan(y) -y2 + 2[(y2 - 1)arctan( ) +yln(y2 + 1)]. 

The new boundary data u 1.j is continuous, and the second derivatives 
satisfy (1.4) for j = 1, so (5.3) has property A1 . Continuing in this way, we 
set U2 = Ul- j=1 I2iV21 , where a2l = a22 = a23 = c24 = 0 are determined by 
(2.4) for k = 2, so U2 satisfies the system 

(Au2=0 inQ2, 
(5.4) juI,(u ~+V I + 2 V2)jI0Q ( * ) |~~~U21@Q9= (U - 2Vo2 + 2Vl + -1)|Q 

(identical with (5.3)), which has property A2. Now we convert (5.4) into a 
system with property B2. We start by setting vO = U2- i= hiW2i, where 
P21 = 122= 2, /23 = P24 = 0 are determined by (3.1) for k =2. Then vo 
satisfies 

(5.5) fAvo =0 in Q, 
1VOI8Q = (U2 - 2 W2l(X, y)X - -W22(x Y))jQ 

which has property b2. That is, the fourth-order derivatives of the boundary 
data vanish at the corners. Next, we set v1 = vo - Si4 I fli Wli, where IA1 = 1, 
P12 = - l, P13 = P14 = 0 are from (3.1) for k = 1. Then v1 satisfies 

(5.6) 
{Av1=0 inQ2, 

lUl|aQ = a2- 2Wlx y) W2(X, y) WI (X, y) + (I + I)W2 (x y))la 

which has both properties b2 and b, . Finally, we set v2 = VI- i= I fPi %o, 
where Po, = 91n2+1 , P02 = - 135,r- 0 In2-2, Pf03 = -2, and PlO4 = 0 are from 



PRECISE SOLUTION OF LAPLACE'S EQUATION 525 

(3.1) for k = 0. Then v2 satisfies 

(Av2=0 inQ2, 

V2I8 = (U2- W2(X, y-W22(X, y) -W(X, y) 

(5.7) 1 +(1 + ft)W12(x ,y) 901n2+1 WI 

I + 1357r-18Oln2-2 W02 + 2 Wo3) . 

Now problem (5.7) has property B2, that is, properties b2, b1, and bo com- 
bined. As in ??3 and 4, let U = v2. Then the solution u of (5.1) is given in 
terms of U by 

2 4 
U U + E E (Cki=Vk + dkiWki) 

k=O i=1 

where 
2 . 

=Co , C02 =- C03 = C04= 0, 7r 
2 

CII =C2 = --, C13 =C24 = O, 

C21 = =C22 = C23 = 0; 

901n2+1 1357r- 1801n2-2 

do 1 =~~~~~~ 
d = 457 , do2 =- 

907t do3 = -2, d04=0?, 

d= 1, d12 = -(1 +-), d13 = d= 0, 

2 
d2= d22= -,d23 =d24 = 0- 

We let U= U1 + U2+ U3+ U4, where each Uj is harmonic and Ui'Qk = 0, 
k 4 jI. We solve for each Uj by truncated Fourier series as in ?4, taking N = 3. 
Then U is approximated by 

3 sinhm7r(l - sy) m 3 sinhhm x 
U3X ) ,.. sino sim7rx + L a2m sinh lM7ry 
U3(x,y)=Zaim sinh Mi7r sinh mi7rsimry m=1 m=1 

3 sinh m7ry .3 sinh m7r(1 - x) +a3m sinh hm7 sin mrn x + E a4m sinh sin m7ry, 
- m=l ~~~~m=l 

where the coefficients ajm are given by 

ajm =2 [ gj sin mrs ds 

2 4 f 1 

-Cki ,Vk'j sin msds + dki Wkij sin m7rs ds)]. 
k=O i=1 

We computed the coefficients ajm, 1 < j < 4, 1 < m < 3, "precisely", us- 
ing Aberth's interval arithmetic package. The integrals f0k V,j sin mirs ds and 

fo Wkj sin mirs ds were evaluated in terms of tabulated, precisely calculated val- 
ues of the quantities Gim(l), Gim(O), S(m, j), and C(m, j) as in Appendix 
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A. We found 

all = 0.0000000 
a12 = 0.0000000 
a13 = 0.0000000 
a2l = 0.0051243 
a22 = 0.0000321 
a23 = 0.0000003 
a3l = -0.0150388 
a32 = 0.0006332 
a33 = -0.0000139 
a4l = 0.0304116 
a42 = 0.0006653 
a43 = 0.0000148 

Here, each of the values of the coefficients given is "precise" in the sense that 
every digit listed is correct. The roundoff error in each coefficient is less than 
0.5 x 10-7; the statement " a2l = 0.0051243" means that the actual value of 
a2l lies in the interval [0.00512425, 0.00512435]. 

The error C,runc in the approximation 

2 4 

U 3(x, Y) + EE(CkiVki(X, y) + dki Wki (X Y')) 
k=O i=l 

due to truncating the Fourier series can be obtained from bounds on the 6th- 
order derivatives of the boundary data Gj = UIla as in ?4. Since the functions 
Wk (x, y) , when restricted to the boundaries, are polynomials of degree 2k + 1, 
and k < 2, these functions are not involved in the bounds on IGS6)1 . The 
restrictions of Vki(x, y) to the boundaries, as given by the formulas in Appendix 
A, are elementary functions of the boundary coordinate, except in some cases 
at the endpoints. In the exceptional cases, tangent identities can be used to give 
an alternative formula which is elementary at the particular endpoint. 

We divided each boundary into a grid of 100 points and evaluated the bound- 
ary functions Gj "as Taylor series" of degree 6, with the independent variable 
representing an interval of length 0.01. The coefficients of the Taylor series were 
then each interval-valued. A bound for G.6) over the particular subinterval was J 
obtained from the Taylor coefficient of the 6th power. We found that 

max IG6(x)I <M12 = 0.0000000, 

Ma<x I G2 (X) I < M22 = 58.0000000, 

ma IG(x)I < M32 = 130.0000000, 

max I G46) (x) I < M42 = 111.0000000. 
O<x< 14 

Therefore, the truncation error is bounded by 

ctrunc trunc 0.0005119479- 
~n,N ~2,3=0005149 
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TABLE 1. The value of the approximate solution on a 9 x 9 grid 

y 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.1 0.02241 0.02525 0.02377 0.02042 0.01648 0.01257 0.00898 0.00574 0.00279 
0.2 0.05331 0.05444 0.04923 0.04134 0.03285 0.02480 0.01758 0.01119 0.00543 
0.3 0.09598 0.08961 0.07711 0.06267 0.04867 0.03615 0.02533 0.01599 0.00772 
0.4 0.15074 0.13055 0.10661 0.08336 0.06289 0.04572 0.03155 0.01972 0.00947 

X 0.5 0.21606 0.17477 0.13501 0.10102 0.07367 0.05223 0.03541 0.02188 0.01043 
0.6 0.28801 0.21659 0.15710 0.11177 0.07848 0.05413 0.03600 0.02196 0.01040 
0.7 0.35750 0.24484 0.16436 0.11041 0.07443 0.04991 0.03257 0.01964 0.00924 
0.8 0.40086 0.23810 0.14494 0.09151 0.05930 0.03877 0.02489 0.01485 0.00695 
0.9 0.34335 0.16149 0.08831 0.05281 0.03320 0.02131 0.01352 0.00801 0.00373 

Table 1 gives the result of evaluating 
2 4 

U3(X , Y) + E E (Cki Vki(X, Y) + dkiW iX Y)) 
k=0 i=1 

on a 9 x 9 grid. Interval arithmetic was used in this evaluation. The intervals 
include truncation error from the quadrature in evaluating the various coeffi- 
cients as well as all roundoff error. All digits shown in Table 1 are correct; 
each value has an error at most 0.5 x 10-5. For example, from the entry for 
x=y= 1/2,we have 

Iu(b 1) - 0.073671 < 0.5 x io-5 + trunc 

< 0.6 x 10-3, 

and so u( 2, 2) E [0.07307, 0.07427]. Similar computations lead to true bounds 
for the exact solution u(x, y) at the other grid points. 

FIGURE 1. Solution of (5.1) 
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Figure 1 is a graph of the solution, based on values of the approximate so- 
lution on a 40 x 40 grid. One unit of the solution corresponds to 2" on the 
graph, so E2, 3 corresponds to roughly .001" on the plot, which was done on a 
300dpi laser printer. The total error at grid points in this figure is therefore at 
most one pixel. Between grid points, the graph is constructed by linear interpo- 
lation. The graph shown therefore is uniformly within one pixel width of the 
graph of the true solution, constructed by linear interpolation on the same grid. 
The main source of error present in Figure 1 is the use of linear interpolation 
between grid points. This could be reduced to less than one pixel by evaluating 
the approximate solution on a finer mesh. 

6. DISCUSSION 

Work related to ours is due to J. Barkley Rosser [9, 10], who developed 
schemes for solving Laplace's equation in regions with re-entrant corners, for 
example L-shaped and T-shaped regions. Such corners "cause" difficulties with 
the convergence rate of traditional finite difference and finite element meth- 
ods. Rosser developed hybrid schemes which cure such difficulties. Near each 
re-entrant corner, these schemes employ approximations based on harmonic 
functions in sectors, constructed to match boundary data specified on radii. Al- 
though the problem we consider has no re-entrant corners, our scheme resembles 
Rosser's in that we regard each of the four corners as a source of convergence 
difficulties, much as Rosser regards the re-entrant corners. To obtain a func- 
tion harmonic in a sector and which satisfies prescribed boundary data on radii, 
Rosser employed conformal mapping. This harmonic function is somewhat 
analogous to our linear combination ij%O Z= (Ck1 J' + dk1 Wy). Instead of 
matching the boundary data, however, our linear combination matches just the 
even-order radial derivatives of the boundary data at the corners. 

We note that for a = 4, the functions rf- sin 01 . m = ,2, ..., which 
appear in a series in Rosser's work, reduce to our polynomials Wk(x, y), k = 
1, 2. 

In Rosser's work, the convergence rate of the hybrid scheme is that char- 
acteristic of the finite difference or finite element method used in conjunction 
with the re-entrant corner approximation scheme. Since we wished to perform 
"precise" computations, in our work we restricted attention to schemes which 
could provide extremely fast convergence rates and therefore did not consider 
finite difference or finite element methods. 

The approximate scheme for (1.1) with general elementary boundary data 
has been implemented using the Aberth-Schaefer's "C++ Module for Range 
Arithmetic" routine library. The program was written for AT&T's C++ version 
2.1 on a Sun Sparc station running SunOS4.1. The program also runs under 
MS-DOS 5.0 using Gnu's C++ version 1.05. 

Input to the program are analytical expressions for the boundary functions, 
the integer n which determines the order 2n to which the derivatives of the 
boundary data for u vanish at the corners, and the integer N which determines 
the number of terms in the Fourier series part in the solution. Output are 
coefficients for the approximate solutions in terms of range numbers which are 
guaranteed to be correct to the last printed digit and also the bound f,runc on 
the error from truncating the Fourier series. 
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The method we described above for solving Laplace's equation precisely can 
be used in solving the general Poisson's equation on the square precisely. Con- 
sider Poisson's equation: 

Au= -F in Q, 

(6.1) t uia= f onOQ, 

where Q is the unit square (0, 1) x (0, 1) and OQ is the boundary of Q. We 
suppose that F(x, y) is a continuous elementary function and f is defined 
on the sides Oij, j = 1, 2, 3, 4, of the square by continuous elementary 
functions fi(x), f2(Y), f3(x), and f4(y). The idea is to convert (6.1) to a 
Laplace equation precisely; then we can use the method we have developed. 
The conversion can be done as follows. 

We can first prove a Chebyshev-Lagrange interpolation theorem which gives 
a polynomial approximation to an arbitrary elementary function F of two 
variables. As the error bounds for the interpolation are given in terms of bounds 
on the partial derivatives of F, and F is elementary, we can compute error 
bounds using Taylor series methods and interval analysis. 

We then apply Chebyshev-Lagrange interpolation to the forcing term F in 
Poisson's equation, approximate the boundary value problem for Poisson's 
equation with forcing term F by a similar problem but with polynomial forc- 
ing term. Computable bounds for the error introduced in the conversion are 
derived, using the maximum (minimum) principle. 

Thirdly, we derive formulas for a particular solution of Poisson's equation 
with the polynomial forcing term. Using this particular solution, the boundary 
value problem for Poisson's equation is converted to one for a Laplace equation. 
The conversion is exact, and the boundary conditions of the converted problem 
are still elementary functions. 

The particular solution to Poisson's equation 

(6.2) Ace = xiy 

is 

[i]+1 A2k-2 
(6.3) coi (X, Y) = Z (-l)k+1 i x i+2kyj-2k+2 

k=1 A+2k 

where An = n(n - 1) ... (n - k + 1). 
We expect that the same basic ideas can also be extended to solve Helmholz's 

equation precisely. This is more difficult, but we have found functions with 
which to extract corner singularities for Helmholz's equation. 

APPENDIX A. FOURIER COEFFICIENTS OF Vk'l 

A.1. Computing f VkJl sin m7ixdx. Recall Vklj= VkJ(x, y)J,9j from ? 4, 
where Vki is defined in Lemma 2.1. We have four functions: 
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kl = 2 (-)k(l- x)2k, 2 

Vk3l=(1+(1-x)2) cos(2karctan !x)arctan 1 

+ (1+ (1-x)2) sin (2k arctan I ) in (1+ (1-x)2) 

V= (1 + x2)k cos(2k arctan x) arctan x+ (1 + x2)k sin(2k arctan x) ln(1 + x2. 

For the second function, 

Vk2j (x) sin m7rx dx = (1 _ X)2k sin m7rx dx 

- _(l)k jx2k sin(m7r - m7rx) dx 

- _79i(_l)k x2k cos m7r sin mirx dx 

- (-1)k+m+l x2k sin m7rx dx 

2ir2km2k+l (2k 2)!(m7)2k-2i + (_ )m+lJ 

To compute f0' J'i (x) sin mirx dx, i = 3, 4, we need the following. 

Lemma A.1. Let 

Ck(X) = (1 + X2)k cos(2k arctanx) 

and 

Sk(X)= (1 +x2)ksin(2karctanx). 

Then Ck (x) and Sk (x) are polynomials of degree 2k and 2k - 1, respectively. 

Proof. With T2k(x) denoting the Chebyshev polynomial of degree 2k, we have 
T2k(cos 0) = cos2k6, hence 

Ck(x) = (1 +x2)kcos(2karctanx) - (1 +x2)kT2k(cos(arctanx)) 

= (1 + x2)k T2k (cos (arccos +x)) = (1 + x2)kT2k\( /I ) X 

from which the first assertion follows. 
Similarly, with U2k I(x) denoting the Chebyshev polynomial of the second 

kind, we have U2k1l(cos6) = sin2k6/sin0, hence 
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Sk(x) = (1 + x2)k sin(2k arctanx = (1 + x2)k sin(arctanx)U2k_l(cos(arctanx)) 

= (1 +x2)k sin (arcsin U2k-1 (cos (arccos *F)) 

=x (1 +x2)k-112U2k-I l f - 

which yields the second assertion. o 

Now we have 

J Vk4 (x) sin mrx dx = J Ck(x) arctanx sin max dx 

Sk (X) ln[1 + x2) sin max dx. 

For computing the two integrals on the right-hand side, set 

Jxisinmix dx = Gim(x) for i = O,...,k, 

where ([6, formula 2.633.1]) 

Gim(X) = - !C lC' cos Im7rx + -1,. 

Taking one term from Ck(x) or Sk (x) (by Lemma A. 1, these functions are 
polynomials), we have 

j xi arctanx sin mirx dx = Gim(x) arctanxIO - j I 2 Gim(x) dx 

= Gim (l) -j + 2 Gim (x) dx 

and 

2jx'ln(l +x2)sinm7rxdx= 2Gim(x)ln(1 +x2)I-j 1 dX2Gim(x)dX 

In 2 [1 x 
Gim(l) I +X2Gim(x)dx 

Since Gim(x) is a linear combination of xi sin m7rx and xi cos m rx (j < i), 
we can evaluate the desired integrals in terms of the integrals 

jX l + 2sinmix dx S(j, m) 

and 

jl 1 +x2 cosmirxdx C(j, m) 

for j=O, ... ,i+1 , i=O, ... ,k. 
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Now consider the computation of Jo3 (x) sin mrx dx. 
Let Ck(x) -(1 +x2)kcos(2k arctan 1). Then as before, 

Ck(X) = (1 +x2)kT2k (Cos (arctanI)) (1 +X2kT2k (i+ ) 

i.e., Ck(x) is a polynomial of degree 2k. Similarly, we can prove that the 
function Sk(X) = (1 + x2)k sin(2k arctan I) is a polynomial of degree 2k - 1. 
Therefore, 

Vk3l(x) sinm7ixdx Ck(l - x) arctan sin mix dx 
1 x 

+ 2 /Sk(l-x)ln(l+(1-x))sinm7rx dx 
2~~~~~~ 

101Ck(x) arctan - sin(m7r - m7rx) dx 
x 

+ 2 Sk(x) ln(l +x2) sin(miT - mTx) dx 

( l)m+1 Ck (x)arctan -sin mirx dx 

+ ( l)+ Sk(x) ln( + x2) sin mrx dx. 

Taking one term from Sk(X) or Ck(x), we have 

jxiarctan 1sin mirx dx =Gim(x) arctan |-+ f 1 Gim(x) dx 
x 

~~~~x Jo0 1 1_GX(2d 

=Gim(l)' -Gim(.)32 + 1 Gim(x) dx 

and 

2.J;xiln(l+x2)sinm7rxdx=Gim(l)!Lf i X2Gim(x)dx 

as before. So the integral can be also evaluated in terms of S(j, m) and 
C(j, m) . o 

A.2. Computing f' Jk,2 sin mrx dx. From ? 2 we have 

Vk2(y) =Vk(X Y)IX=1 = Vk(l, Y) 

=( I + y2)k (cos(2k arctany) arctany + - sin(2k arctany) ln( 1 + y2)) 

Vk2(y) =V2 (X,Y)fi1 = Vk (Y, 1 1-x)lX = Vk(Y, 0) 

=0 
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Vk32(y) V(X Y)IX=1 = Vk (1 -X, 1- = Vk(O, 1 -y) 

=(l1 _ y)2k (_ 1 k 7 
2' 

Vk42 (y) =VkX, Y)IX=1 = Vk(l -y, x) =1 Vk(l -Y, 1) 

=(1 + (1-y)2)kcos K2k arctan 1 )arctan 1 

+ 2(1 + (1 y)2)k sin (2karctan 1 ! ) In(1 + (1 y)2)- 

Then 

Vk'2(y) sin m7iydy = j V(x) sin m7x dx, 

which is evaluated when we compute , J/4j (x) sin m7x dx, and similarly 

Vk32(y)sin mrydy = j Vk(x)sin m7xdx, 

Vk42(y) sin mry dy J Vk3 (x) sin mnx dx, 

which are discussed in Appendix A. 1. 
A.3. Computing fh Vk3 sin m7ixdx. We have 

Vk3(x) =Vk(x, )IY)y= = Vk(X, 1) 

=(1 + X2)k (COS (2k arctan I) arctan 

+ 2 sin (2k arctan-) ln(1 + x)) 

Vk23(X) =k(, )Y1= Vk VY S 1-X)|Y=1 Vk(l S 1 -X) 

=(1 + (1 _ X)2)k cos (2k arctan(1 - x)) arctan(1 - x) 

+ 2_(l + ( 1 _ X)2)k sin (2k arctan(l1 - x)) In (1 + ( 1 -x)2) 

Vk33(Y) =Vk3(,Y|= Vk(l -X, 1-Y)ly=l = Vk(l -X, 0) 

_0, 

Vk3(y) =Vkh Vke( 1-y x)ny=l Vk(?, X) 

=x2k ( k 2 . 

Then 
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j Vk,(x)sin m7x dx 
I 

= 11(1 + x2)k cos (2k arctan I)arctan - sin m7x dx 
1 fl~ ~~~x 

+ 2 1 (1 + x2)k sin (2k arctan-) ln(1 + x2) sin m7rx dx 

= I: (x) arctan - sin m x dx 
o ~~x 

+ Sk (x)ln(l + x2) sinm7xdx 
2 

= ( l)m+l j Vk3l sin m7x dx, 

j J'2 (y) sin m y dy 

= j ( 1 + (1 - x)2)k cos (2k arctan(1 - x)) arctan(1 - x) sin m7rx dx 

+ 
1 

(1 + (1 -x)2)k sin (2k arctan(1 -x))ln (i + (1 -x)2) sinm7xdx 

=(i1ym+l j Vk4l(x) sin m x dx, 

j V (y) sin m7y dy = 1 ( l)k x2k sin m7x dx 

=G2 ,km(1)G2k,m(O)) 

A.4. Computing fo J/i sin m x dx. We have 

Vk4(y) = Vk(X, Y)IX=O = Vk(O, Y) 

= y2k (-1)k 7, 

2' 
Vk24(y) = Vk (,Y| == VV Y S 1-X) |Lxo = VV Y 1 ) 

= (1 +y2)k cos (2karctan!) arctan 1 

+ 1 (1 + y2)k sin(2karctan )1n(1 +y)2) 

Vk34(y)= Vk3x Y)x== Vk(l X, 1 -Y)Ix=o = Vk(l,1 - 
1y) 

= (1 + (1 _ y)2)k cos (2k arctan(1 - y)) arctan(1 - y) 

+2 ( 1+ ( 1-y)) sin (2k arctan(l1 - y)) In (1+ ( 1 _y 

Vk4 (y) = Vk4 (x, Y)I =0 = Vk(l -y, x)lx=o = Vk'(1 -y, 0) 

0. 

Then 
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j V, 4(y)sinm7rydy=(-1) k(G2k,m(l)-G2k,m(O)) 

Vk24(y)sinm7y dy = Vk3(x) sinmnx dx, 

j Vk34(y)sinm7rydy= Vk23(x)sinmirxdx, 

which are discussed in A.3. 
The precise computation of the quantities S(j, m) and C(j, m) can be 

done by using Aberth's precise quadrature [1, Chapter 8]. A table of these 
quantities was computed. 

APPENDIX B. FOURIER COEFFICIENTS OF Wkij 

Recall from Lemma 3.1 that 

k ( ) E (-1)1 2(k-j)+l 2j+1 Wk(x,y) Z (2 (k -j) + 1)! (2j1+ 1)! 

Then 

Wk'l ='Wkl(XA=0, 

Wkl= WkJ(x,Y) 0 = Wk(Y, 1 -x)ly=o = Wk(O, 1-x) = 0 

W3l =W3(X , y)ly=o = W(1X -)I= k(1X 

Wk4 I Wk4x )|o= Wk ( X-, I ) ly=o = Wk ( - X) 1 

k (-1)j x 2k+1 
- (2(k - j) + 1)!(2j + 1)! 

Wk I Wk,'x =Wk(l -y Y Xl=o Wk(l, X) 

Hence, 

Wk3j (x) sin m7rx dx 

E (2(k - j) + 1)!(2j + l1)! - 
( x)2(k1j)+1 imrd 

(( k (j1)+)!(j (1) Xx2(k-j)+l sin mirxdx j= (2(k -I) + 1)!(2j + ! 

k (-.4 )m+J+l 

= (2(k -j) + 1)!(2j + 1)!(G2(k_J)+1 m(1)-G2(k-.)+l,m(O)) 

j=a 

and 
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j 
k4 x sin mrx dx = -)1 l sin mrx dx 

A (2(k - i) + 1)!(2j + 1)! 
lo 

E (2(k-i) + 1)!(2j + 1)! (G2j+I m( 1 )-G2j+1 m(?)) 

Similarly, the integrals fO Wk2(x) sin mirx dx, fJ Wi3(x) sin m rx dx and 

fO W,14(x) sin mirx dx can be expressed in terms of the functions Gi,m evalu- 
ated at 0 and 1. 
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